微信号:weixin888
1. 基本用法:
注:如果要把model放在GPU中,需要在构建一个Optimizer之前就执行model.cuda(),确保优化器里面的参数也是在GPU中。
例子:
2. 灵活的设置各层的学习率
注:这个时候,可以在optimizer设置选项作为关键字参数传递,这时它们将被认为是默认值(当字典里面没有这个关键字参数key-value对时,就使用这个默认的参数)
This is useful when you only want to vary a single option, while keeping all others consistent between parameter groups.
例子:
上面创建的optim.SGD类型的Optimizer,lr默认值为1e-1,momentum默认值为0.9。features12的参数学习率为1e-2。
torch.optim.optimizer.Optimizer的初始化函数如下:
params (iterable): iterable of parameters to optimize or dicts defining parameter groups (params可以是可迭代的参数,或者一个定义参数组的字典,如上所示,字典的键值包括:params,lr,momentum,dampening,weight_decay,nesterov)
想要改变各层的学习率,可以访问optimizer的param_groups属性。
因此,想要更改某层参数的学习率,可以访问optimizer.param_groups,指定某个索引更改’lr’参数就可以。
查看torch.optim.SGD等Optimizer的源码,发现没有L1正则的选项,而L1正则更容易得到稀疏解。
这个时候,可以更改文件,模拟L2正则化的操作。
L1正则化求导如下:
更改后的sgd.py如下:
一个使用的例子: