某某潮流网,最新潮鞋资讯分享!

微信号:weixin888

上海市精细时空尺度人口分布估计与特征分析

时间:2023-07-29 19:39人气:编辑:佚名
[1] 张善余. 人口地理学概论(第三版)[M].上海:华东师范大学出版社,2013.

[本文引用: 2]     

[ Zhang S Y.Population Geography (The Third Edition)[M]. Shanghai: East China Normal University Press, 2013. ]

[本文引用: 2]     

[2] 闫庆武,卞正富,张萍.

基于居民点密度的人口密度空间化

[J].地理与地理信息科学,2011,27(5):95-98.

URL      [本文引用: 1]      摘要

提出了一种基于居民点密度的人口密度空间化方法.以江苏省人口数 据空间化为例,在采用核密度估计法得到江苏省镇(乡、街道)居民点密度后,运用基于居民点密度的人口密度空间化计算公式获得江苏省1 000 m×1 000 m的人口密度格网图,结果表明:江苏省人口分布的热点地区正是在建的三大都市圈(苏锡常都市圈、南京都市圈和徐州都市圈),其中苏锡常都市圈的人口分布呈 现各向异性,而南京和徐州都市圈的人口分布则表现为各向同性;人口密度不仅取决于居民点密度,还与平均每个居民点的人口数密切相关,居民点密度大的区域的 人口密度不一定大,居民点密度小的区域的人口密度也不一定小.

[ Yan Q W, Bian Z F, Zhang P, et al.

Census Spatialization Based on Settlements Density

[J]. Geography and Geo-Information Science, 2011,27(5):95-98. ]

URL      [本文引用: 1]      摘要

提出了一种基于居民点密度的人口密度空间化方法.以江苏省人口数 据空间化为例,在采用核密度估计法得到江苏省镇(乡、街道)居民点密度后,运用基于居民点密度的人口密度空间化计算公式获得江苏省1 000 m×1 000 m的人口密度格网图,结果表明:江苏省人口分布的热点地区正是在建的三大都市圈(苏锡常都市圈、南京都市圈和徐州都市圈),其中苏锡常都市圈的人口分布呈 现各向异性,而南京和徐州都市圈的人口分布则表现为各向同性;人口密度不仅取决于居民点密度,还与平均每个居民点的人口数密切相关,居民点密度大的区域的 人口密度不一定大,居民点密度小的区域的人口密度也不一定小.
[3] Kruni? N, Bajat B, Kilibarda M.Dasymetric Mapping of Population Distribution in Serbia Based on Soil Sealing Degrees Layer[M]. Surface Models for Geosciences. Springer International Publishing, 2015:137-149.

[4] Alahmadi M, Atkinson P, Martin D.

Estimating the spatial distribution of the population of Riyadh

[J]. Saudi Arabia using remotely sensed built land cover and height data. Computers, Environment and Urban Systems, 2013,41:167-176.

[本文引用: 1]     

[5] Ural S, Hussain E, Shan J.

Building population mapping with aerial imagery and GIS data

[J]. International Journal of Applied Earth Observation and Geoinformation, 2011,13(6):841-852.

https://doi.org/10.1016/j.jag.2011.06.004      URL      Magsci      [本文引用: 1]      摘要

Geospatial distribution of population at a scale of individual buildings is needed for analysis of people's interaction with their local socio-economic and physical environments. High resolution aerial images are capable of capturing urban complexities and considered as a potential source for mapping urban features at this fine scale. This paper studies population mapping for individual buildings by using aerial imagery and other geographic data. Building footprints and heights are first determined from aerial images, digital terrain and surface models. City zoning maps allow the classification of the buildings as residential and non-residential. The use of additional ancillary geographic data further filters residential utility buildings out of the residential area and identifies houses and apartments. In the final step, census block population, which is publicly available from the U.S. Census, is disaggregated and mapped to individual residential buildings. This paper proposes a modified building population mapping model that takes into account the effects of different types of residential buildings. Detailed steps are described that lead to the identification of residential buildings from imagery and other GIS data layers. Estimated building populations are evaluated per census block with reference to the known census records. This paper presents and evaluates the results of building population mapping in areas of West Lafayette, Lafayette, and Wea Township, all in the state of Indiana, USA. (C) 2011 Published by Elsevier B.V.
[6] Azar D, Engstrom R, Graesser J, et al.

Generation of fine-scale population layers using multi-resolution satellite imagery and geospatial data

[J]. Remote Sensing of Environment, 2013,130:219-232.

https://doi.org/10.1016/j.rse.2012.11.022      URL      摘要

A gridded population dataset was produced for Pakistan by developing an algorithm that distributed population either on the basis of per-pixel built-up area fraction or the per-pixel value of a weighted population likelihood layer. Per-pixel built-up area fraction was calculated using a classification and regression trees (CART) methodology integrating high- and medium-resolution satellite imagery. The likelihood layer was produced by weighting different geospatial layers according to their effect on the likelihood of population being found in the particular pixel. The geospatial layers integrated into the likelihood layer were: 1) proximity to remotely sensed built-up pixels, 2) density of settlement points in a fixed kernel, 3) slope, 4) elevation, and 5) heterogeneity of landcover types found within a search radius. The method for weighting these layers varied according to settlement patterns found in the provinces of Pakistan. Differences in zonal population estimates generated from the 100-meter gridded population layer resulting from this study, Oak Ridge National Laboratory's LandScan (2002) , and CIESIN's Gridded Population of the World and Global Rural Urban Mapping Project (GPW and GRUMP) are examined. Population estimates for small areas produced using this paper's method were found to differ from census counts to a lesser degree than those produced using LandScan, GPW, or GRUMP. The root mean square error (RMSE) for small area population estimates for this method, LandScan, GPW, and GRUMP were 31,089, 48,001, 100,260, and 72,071, respectively.
[7] Lung T, Lubker T, Ngochoch J K, et al.

Human population distribution modelling at regional level using very high resolution satellite imagery

[J]. Applied Geography, 2013,41:36-45.

https://doi.org/10.1016/j.apgeog.2013.03.002      URL      [本文引用: 1]      摘要

Modelling the distribution of human population based on satellite-derived information has become an important field of research, providing valuable input e.g. for human impact assessments related to the management of threatened ecosystems. However, few regional-scale studies have been conducted in developing countries, where detailed land cover data is usually absent, and the potential of very high resolution (VHR) satellite imagery in this context has not been explored yet. This study uses results obtained through object-based image analysis (OBIA) of QuickBird imagery for a subset of a highly populated rural area in western Kenya. Functions are established that approximate frequency distributions of QuickBird-derived locations of houses in relation to five factors. These factors are known to impact settlement patterns and data is available for the entire study area. Based on an overall probability coefficient (weight) calculated from the single functions, human population is redistributed at the smallest administrative level available (version A). In addition, the problem of artefacts remaining at administrative boundaries is addressed by combining the approach with the pycnophylactic smoothing algorithm ( Tobler, 1979 ) (version B). The results show distinct patterns of population distribution, with particular influence of rivers/streams and slope, while version B in addition is free of boundary artefacts. Despite some limitations compared to models based on detailed land cover data (e.g. the ability of capturing abrupt changes in population density), a visual and numerical evaluation of the results shows that using houses as classified from VHR imagery for a study area subset works well for redistributing human population at the regional level. This approach might be suitable to be applied also in other regions of e.g. sub-Saharan Africa.
[8] Liu X, Wang J.

The geography of Weibo

[J]. Environment and Planning A, 2015,47(6):1231-1234.

[本文引用: 1]     

[9] Pan G, Qi G, Wu Z, et al.

Land-use classification using taxi GPS traces

[J]. IEEE Transactions on Intelligent Transportation Systems, 2013,14(1):113-123.

https://doi.org/10.1109/TITS.2012.2209201      URL      Magsci      摘要

Detailed land use, which is difficult to obtain, is an integral part of urban planning. Currently, GPS traces of vehicles are becoming readily available. It conveys human mobility and activity information, which can be closely related to the land use of a region. This paper discusses the potential use of taxi traces for urban land-use classification, particularly for recognizing the social function of urban land by using one year's trace data from 4000 taxis. First, we found that pick-up/set-down dynamics, extracted from taxi traces, exhibited clear patterns corresponding to the land-use classes of these regions. Second, with six features designed to characterize the pick-up/set-down pattern, land-use classes of regions could be recognized. Classification results using the best combination of features achieved a recognition accuracy of 95%. Third, the classification results also highlighted regions that changed land-use class from one to another, and such land-use class transition dynamics of regions revealed unusual real-world social events. Moreover, the pick-up/set-down dynamics could further reflect to what extent each region is used as a certain class.
[10] Cranshaw J,Schwartz R,Hong J I,et al.

The livehoods project: Utilizing social media to understand the dynamics of a city

[C]. International AAAI Conference on Weblogs and Social Media. 2012:58-65.

[11] Ratti C, Frenchman D, Pulselli R M, et al.

Mobile landscapes: using location data from cell phones for urban analysis

[J]. Environment and Planning B: Planning and Design, 2006,33(5):727-748.

[12] Pierre D, Catherine L, Samuel M, et al.

Dynamic population mapping using mobile phone data

[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(45):15888-15893.

https://doi.org/10.1073/pnas.1408439111      URL      [本文引用: 1]      摘要

During the past few decades, technologies such as remote sensing, geographical information systems, and global positioning systems have transformed the way the distribution of human population is studied and modeled in space and time. However, the mapping of populations remains constrained by the logistics of censuses and surveys. Consequently, spatially detailed changes across scales of days, weeks, or months, or even year to year, are difficult to assess and limit the application of human population maps in situations in which timely information is required, such as disasters, conflicts, or epidemics. Mobile phones (MPs) now have an extremely high penetration rate across the globe, and analyzing the spatiotemporal distribution of MP calls geolocated to the tower level may overcome many limitations of census-based approaches, provided that the use of MP data is properly assessed and calibrated. Using datasets of more than 1 billion MP call records from Portugal and France, we show how spatially and temporarily explicit estimations of population densities can be produced at national scales, and how these estimates compare with outputs produced using alternative human population mapping methods. We also demonstrate how maps of human population changes can be produced over multiple timescales while preserving the anonymity of MP users. With similar data being collected every day by MP network providers across the world, the prospect of being able to map contemporary and changing human population distributions over relatively short intervals exists, paving the way for new applications and a near real-time understanding of patterns and processes in human geography.
[13] 钮心毅,丁亮,宋小冬.

基于手机数据识别上海中心城的城市空间结构

[J].城市规划学刊,2014(6):61-67.

[本文引用: 1]     

[ Niu X Y, Ding L, Song X D.

Understanding urban spatial structure of Shanghai central city based on mobile phone data

[J]. Urban Planning Forum, 2014,6:61-67. ]

[本文引用: 1]     

[14] Sanou B.

The World in 2013: ICT facts and figures

[R]. International Telecommunications Union, 2013.

[15] 冉斌.

手机数据在交通调查和交通规划中的应用

[J].城市交通,2013(1):72-81,32.

[本文引用: 1]     

[ Ran B.

Use of cellphone data in travel survey and transportation planning

[J]. Urban Transport of China, 2013,1:72-81,32. ]

[本文引用: 1]     

[16] 王德,王灿,谢栋灿,.

基于手机信令数据的上海市不同等级商业中心商圈的比较——以南京东路、五角场、鞍山路为例

[J].城市规划学刊,2015(3):50-60.

https://doi.org/10.16361/j.upf.201503007      URL      摘要

利用手机信令数据,以上海市南京东路、五角场和鞍山路三个不同等级的商业中心为例对商圈进行合理地划分,分析和比较了不同等级商业中心的消费者数量的空间分布特征,并采取一定的可视化手段和空间统计指标对三个商业中心的等级性进行空间抽象,深入探讨不同等级商业中心的消费者空间分布特点.研究表明,不同等级商业中心在消费者分布范围、空间集聚性、对称性方面都存在较大差异.整体来看,从大范围覆盖的广域型高等级中心到依托局部高密度的地缘型低等级中心,形成了一种有序的商业中心空间体系.另外,也对这一特征的深层机制进行了剖析,并简要探讨了对商业网点规划的应用价值.

[ Wang D, Wang C, Xie D C, et al.

Comparison of retail trade areas of retail centers with different hierarchical levels: a case study of east Nanjing Road, Wujiaochang, Anshan Road in Shanghai

[J]. Urban Planning Forum, 2015,3:50-60. ]

https://doi.org/10.16361/j.upf.201503007      URL      摘要

利用手机信令数据,以上海市南京东路、五角场和鞍山路三个不同等级的商业中心为例对商圈进行合理地划分,分析和比较了不同等级商业中心的消费者数量的空间分布特征,并采取一定的可视化手段和空间统计指标对三个商业中心的等级性进行空间抽象,深入探讨不同等级商业中心的消费者空间分布特点.研究表明,不同等级商业中心在消费者分布范围、空间集聚性、对称性方面都存在较大差异.整体来看,从大范围覆盖的广域型高等级中心到依托局部高密度的地缘型低等级中心,形成了一种有序的商业中心空间体系.另外,也对这一特征的深层机制进行了剖析,并简要探讨了对商业网点规划的应用价值.
[17] 高向东,吴文钰.

20世纪90年代上海市人口分布变动及模拟

[J].地理学报,2005,60(4):637-644.

https://doi.org/10.3321/j.issn:0375-5444.2005.04.012      URL      Magsci      [本文引用: 1]      摘要

<p>利用上海市1990年第四次、2000年第五次人口普查资料,运用4种不同的方法划分上海市区,分析了上海市1990~2000年的人口分布变动,模拟了1990年和2000年的人口分布模型。结果表明:从1990年到2000年的10年中,上海中心城人口大量减少,郊区人口增加,人口郊区化显著,上海人口分布变动趋于均衡;上海人口的郊迁扩散方式,主要与同心圆式的环形道路与放射形道路作为基本骨架的城市建设格局有密切关系,尤其是受早已建成的内环线的影响;上海人口郊区化主要表现为近域推进, 1990~2000年的圈层人口密度变动曲线的相交点大约在5 km处,圈层人口密度变化主要在16 km之内;对人口分布模型的模拟则表明,上海人口分布虽然符合负指数函数模型,但不是最优模型,上海人口密度分布的最优模型是Cubic函数。</p>

[ Gao X D, Wu W Y.

Population redistribution and modelling of Shanghai City in the 1990s

[J]. Acta Geographica Sinica, 2005,60(4):637-644. ]

https://doi.org/10.3321/j.issn:0375-5444.2005.04.012      URL      Magsci      [本文引用: 1]      摘要

<p>利用上海市1990年第四次、2000年第五次人口普查资料,运用4种不同的方法划分上海市区,分析了上海市1990~2000年的人口分布变动,模拟了1990年和2000年的人口分布模型。结果表明:从1990年到2000年的10年中,上海中心城人口大量减少,郊区人口增加,人口郊区化显著,上海人口分布变动趋于均衡;上海人口的郊迁扩散方式,主要与同心圆式的环形道路与放射形道路作为基本骨架的城市建设格局有密切关系,尤其是受早已建成的内环线的影响;上海人口郊区化主要表现为近域推进, 1990~2000年的圈层人口密度变动曲线的相交点大约在5 km处,圈层人口密度变化主要在16 km之内;对人口分布模型的模拟则表明,上海人口分布虽然符合负指数函数模型,但不是最优模型,上海人口密度分布的最优模型是Cubic函数。</p>
[18] 李健,宁越敏.1990

年代以来上海人口空间变动与城市空间结构重构

[J].城市规划学刊,2007(2):20-24.

[本文引用: 2]     

[ Li J, Ning Y M.

Population spatial change and urban spatial restructuring in Shanghai since the 1990s

[J]. Urban Planning Forum, 2007,2:20-24. ]

[本文引用: 2]     

[19] 王裕明,吉祥,刘彩云.

上海市人口结构变化预测研究

[J].上海经济研究,2014(3):89-98.

[本文引用: 1]     

[ Wang Y M, Ji X, Liu C Y.

Study on prediction of population change in Shanghai

[J]. Shanghai Journal of Economics, 2014,3:89-98. ]

[本文引用: 1]     

[20] 孙斌栋,魏旭红.

上海都市区就业——人口空间结构演化特征

[J].地理学报,2014,69(6):747-758.

https://doi.org/10.11821/dlxb201406003      URL      Magsci      [本文引用: 1]      摘要

研究以非参数模型计量为基础,从集聚—分散维度和单中心—多中心维度刻画了上海都市区就业、人口空间演化特征,并与北京都市区的研究结果进行了横向比较。研究表明,上海都市区的就业和人口不断向外扩散,同时近、远郊均出现了稳定的再集中,就业和人口的空间多中心性都在增强。而北京只存在人口的分散化和多中心化,就业却呈现集中化和单中心化的态势。因而,上海都市区的就业—人口空间匹配程度高于北京。产业结构差异是造成北京、上海两地就业空间演化特征分异的原因之一,上海制造业比重高于北京,郊区的制造业集聚强化了近、远郊吸纳就业能力,促进了多中心空间结构的形成。北京和上海中心城区的就业、人口规模仍在扩张,导致近邻地区被包络在内,原有的次中心逐渐消失,因而,科学确定中心城区的增长边界,有效防止邻近蔓延,应当成为特大城市未来发展的关注重点。

[ Sun B D, Wei X H.

Spatial distribution and structure evolution of employment and population in Shanghai metropolitan area

. Acta Geographica Sinica, 2014,69(6):747-758. ]

https://doi.org/10.11821/dlxb201406003      URL      Magsci      [本文引用: 1]      摘要

研究以非参数模型计量为基础,从集聚—分散维度和单中心—多中心维度刻画了上海都市区就业、人口空间演化特征,并与北京都市区的研究结果进行了横向比较。研究表明,上海都市区的就业和人口不断向外扩散,同时近、远郊均出现了稳定的再集中,就业和人口的空间多中心性都在增强。而北京只存在人口的分散化和多中心化,就业却呈现集中化和单中心化的态势。因而,上海都市区的就业—人口空间匹配程度高于北京。产业结构差异是造成北京、上海两地就业空间演化特征分异的原因之一,上海制造业比重高于北京,郊区的制造业集聚强化了近、远郊吸纳就业能力,促进了多中心空间结构的形成。北京和上海中心城区的就业、人口规模仍在扩张,导致近邻地区被包络在内,原有的次中心逐渐消失,因而,科学确定中心城区的增长边界,有效防止邻近蔓延,应当成为特大城市未来发展的关注重点。
[21] 丁亮,钮心毅,宋小冬.

上海中心城就业中心体系测度——基于手机信令数据的研究

[J].地理学报,2016,71(3):484-499.

https://doi.org/10.11821/dlxb201603011      URL      Magsci      摘要

<p>利用手机信令数据识别上海市域内手机用户的工作地和居住地,获取就业者的通勤数据,测度上海中心城的就业中心体系.首先用就业者工作地数据生成就业密度分布图,基于中心城的就业密度识别就业中心.随后,用就业者工作地和居住地数据分别从就业密度和通勤联系两方面测度各中心的能级,分析各中心的腹地和势力范围.研究发现:① 上海中心城的就业中心呈主中心强大的弱多中心体系;② 就业密度越高的中心与其他地区的通勤联系一般也越强,但通勤联系在各中心间的差异更显著;③ 能级越高的中心腹地面积越大,但势力范围不一定越大;④ 相比于能级,职住功能混合度对职住平衡的影响更大;⑤缺少就业中心的地区势力范围呈交替状.本研究一定程度上能有助于解决既往就业中心体系研究因空间单元较大,缺少通勤数据在中心识别,通勤联系测度等方面受到的局限,希望能为构建上海中心城就业多中心体系提供帮助.</p>

[ Ding L, Niu X Y, Song X D.

Measuring the employment center system in Shanghai central city: a study using mobile phone signaling data

[J]. Acta Geographica Sinica, 2016,71(3):484-499. ]

https://doi.org/10.11821/dlxb201603011      URL      Magsci      摘要

<p>利用手机信令数据识别上海市域内手机用户的工作地和居住地,获取就业者的通勤数据,测度上海中心城的就业中心体系.首先用就业者工作地数据生成就业密度分布图,基于中心城的就业密度识别就业中心.随后,用就业者工作地和居住地数据分别从就业密度和通勤联系两方面测度各中心的能级,分析各中心的腹地和势力范围.研究发现:① 上海中心城的就业中心呈主中心强大的弱多中心体系;② 就业密度越高的中心与其他地区的通勤联系一般也越强,但通勤联系在各中心间的差异更显著;③ 能级越高的中心腹地面积越大,但势力范围不一定越大;④ 相比于能级,职住功能混合度对职住平衡的影响更大;⑤缺少就业中心的地区势力范围呈交替状.本研究一定程度上能有助于解决既往就业中心体系研究因空间单元较大,缺少通勤数据在中心识别,通勤联系测度等方面受到的局限,希望能为构建上海中心城就业多中心体系提供帮助.</p>
[22] 张天然.

基于手机信令数据的上海市域职住空间分析

[J].城市交通,2016,14(1):15-23.

https://doi.org/10.13813/j.cn11-5141/u.2016.0103      URL      [本文引用: 1]      摘要

居民居住地与工作地的空间关系是城市空间布局的重要依据。基于手机信令数据,提出分区域的居民通勤距离和就业岗位通勤距离计算方法。通过对比验证了手机信令数据与居民出行调查数据的职住空间和距离分布特征较为吻合。重点分析上海市中心城区及周边地区的职住空间关系及通勤距离。提出职住通道平衡概念,并分析职住通道不平衡地区与轨道交通拥挤程度的关系,指出土地利用布局优化对职住通道平衡的重要性。通过分析不同新城的职住空间特征,探讨新城范围划定对统计分析的影响,总结了新城职住空间较为独立、居民内部就业率较高的特征。

[ Zhang T R.

Job-housing spatial distribution analysis in Shanghai metropolitan area based on cellular signaling data

[J]. Urban Transport of China, 2016,14(1):15-23. ]

https://doi.org/10.13813/j.cn11-5141/u.2016.0103      URL      [本文引用: 1]      摘要

居民居住地与工作地的空间关系是城市空间布局的重要依据。基于手机信令数据,提出分区域的居民通勤距离和就业岗位通勤距离计算方法。通过对比验证了手机信令数据与居民出行调查数据的职住空间和距离分布特征较为吻合。重点分析上海市中心城区及周边地区的职住空间关系及通勤距离。提出职住通道平衡概念,并分析职住通道不平衡地区与轨道交通拥挤程度的关系,指出土地利用布局优化对职住通道平衡的重要性。通过分析不同新城的职住空间特征,探讨新城范围划定对统计分析的影响,总结了新城职住空间较为独立、居民内部就业率较高的特征。
[23] 许宁,尹凌,胡金星.

从大规模短期规则采样的手机定位数据中识别居民职住地

[J].武汉大学学报?信息科学版,2014,39(6):750-756.

https://doi.org/10.13203/j.whugis20140085      URL      [本文引用: 1]      摘要

使用大规模手机定位数据获取居民职住地分布是大数据趋势下城市研究的新兴技术.然而,现有的研究主要使用了长期不规则稀疏采样的手机通话数据,对短期规则采样的手机定位数据缺乏尝试.基于大规模短期规则采样的手机定位数据,提出了一种居民职住地识别的方法.这是首次从大规模短期规则采样的手机定位数据中进行居民职住地识别的尝试,并对识别结果进行了较全面的验证.该研究成果为职住平衡等相关城市问题研究探讨了一种新型大规模数据源的可行性,在低成本大幅度提高相关研究的样本代表性和分析结果可靠性上具有重要意义.

[ Xu N, Yin L, Hu J X.

Identifying home-work locations from short-term, large-scale, and regularly sampled mobile phone tracking data

[J]. Geomatics and Information Science of Wuhan University, 2014,39(6):750-756. ]

https://doi.org/10.13203/j.whugis20140085      URL      [本文引用: 1]      摘要

使用大规模手机定位数据获取居民职住地分布是大数据趋势下城市研究的新兴技术.然而,现有的研究主要使用了长期不规则稀疏采样的手机通话数据,对短期规则采样的手机定位数据缺乏尝试.基于大规模短期规则采样的手机定位数据,提出了一种居民职住地识别的方法.这是首次从大规模短期规则采样的手机定位数据中进行居民职住地识别的尝试,并对识别结果进行了较全面的验证.该研究成果为职住平衡等相关城市问题研究探讨了一种新型大规模数据源的可行性,在低成本大幅度提高相关研究的样本代表性和分析结果可靠性上具有重要意义.
[24] 罗仁朝,王德.

上海流动人口聚居区类型及其特征研究

.城市规划,2009(2):31-37.

[本文引用: 1]     

[ Luo R C, Wang D.

Types and characteristics of migrant communities in Shanghai

. City Planning Review, 2009,2:31-37. ]

[本文引用: 1]     

[25] 付磊,唐子来.

上海市外来人口社会空间结构演化的特征与趋势

[J].城市规划学刊,2008(1):69-76.

[本文引用: 1]     

[ Fu L, Tang Z L.

The social spatial structure of floating population in Shanghai and its evolution since the reform and opening-up

. Urban Planning Forum, 2008,1:69-76. ]

[本文引用: 1]     

[26] 吕晨. 人口的迁移与流动[M].广州:中山大学出版社,2014.

[本文引用: 1]     

[ Lv C.The migration and movement of population[M]. Guangzhou: Sun Yat-sen University Press, 2014. ]

[本文引用: 1]     

标签: ing   and  
相关资讯
热门频道

热门标签

官方微信官方微博百家号

网站简介 | 意见反馈 | 联系我们 | 法律声明 | 广告服务

Copyright © 2002-2022 天富平台-全球注册登录站 版权所有 备案号:粤ICP备xxxxxxx号

平台注册入口