Geospatial distribution of population at a scale of individual buildings is needed for analysis of people's interaction with their local socio-economic and physical environments. High resolution aerial images are capable of capturing urban complexities and considered as a potential source for mapping urban features at this fine scale. This paper studies population mapping for individual buildings by using aerial imagery and other geographic data. Building footprints and heights are first determined from aerial images, digital terrain and surface models. City zoning maps allow the classification of the buildings as residential and non-residential. The use of additional ancillary geographic data further filters residential utility buildings out of the residential area and identifies houses and apartments. In the final step, census block population, which is publicly available from the U.S. Census, is disaggregated and mapped to individual residential buildings. This paper proposes a modified building population mapping model that takes into account the effects of different types of residential buildings. Detailed steps are described that lead to the identification of residential buildings from imagery and other GIS data layers. Estimated building populations are evaluated per census block with reference to the known census records. This paper presents and evaluates the results of building population mapping in areas of West Lafayette, Lafayette, and Wea Township, all in the state of Indiana, USA. (C) 2011 Published by Elsevier B.V.
[6]
AzarD, EngstromR, GraesserJ, et al.
Generation of fine-scale population layers using multi-resolution satellite imagery and geospatial data
A gridded population dataset was produced for Pakistan by developing an algorithm that distributed population either on the basis of per-pixel built-up area fraction or the per-pixel value of a weighted population likelihood layer. Per-pixel built-up area fraction was calculated using a classification and regression trees (CART) methodology integrating high- and medium-resolution satellite imagery. The likelihood layer was produced by weighting different geospatial layers according to their effect on the likelihood of population being found in the particular pixel. The geospatial layers integrated into the likelihood layer were: 1) proximity to remotely sensed built-up pixels, 2) density of settlement points in a fixed kernel, 3) slope, 4) elevation, and 5) heterogeneity of landcover types found within a search radius. The method for weighting these layers varied according to settlement patterns found in the provinces of Pakistan. Differences in zonal population estimates generated from the 100-meter gridded population layer resulting from this study, Oak Ridge National Laboratory's LandScan (2002) , and CIESIN's Gridded Population of the World and Global Rural Urban Mapping Project (GPW and GRUMP) are examined. Population estimates for small areas produced using this paper's method were found to differ from census counts to a lesser degree than those produced using LandScan, GPW, or GRUMP. The root mean square error (RMSE) for small area population estimates for this method, LandScan, GPW, and GRUMP were 31,089, 48,001, 100,260, and 72,071, respectively.
[7]
LungT, LubkerT, Ngochoch JK, et al.
Human population distribution modelling at regional level using very high resolution satellite imagery
Modelling the distribution of human population based on satellite-derived information has become an important field of research, providing valuable input e.g. for human impact assessments related to the management of threatened ecosystems. However, few regional-scale studies have been conducted in developing countries, where detailed land cover data is usually absent, and the potential of very high resolution (VHR) satellite imagery in this context has not been explored yet. This study uses results obtained through object-based image analysis (OBIA) of QuickBird imagery for a subset of a highly populated rural area in western Kenya. Functions are established that approximate frequency distributions of QuickBird-derived locations of houses in relation to five factors. These factors are known to impact settlement patterns and data is available for the entire study area. Based on an overall probability coefficient (weight) calculated from the single functions, human population is redistributed at the smallest administrative level available (version A). In addition, the problem of artefacts remaining at administrative boundaries is addressed by combining the approach with the pycnophylactic smoothing algorithm ( Tobler, 1979 ) (version B). The results show distinct patterns of population distribution, with particular influence of rivers/streams and slope, while version B in addition is free of boundary artefacts. Despite some limitations compared to models based on detailed land cover data (e.g. the ability of capturing abrupt changes in population density), a visual and numerical evaluation of the results shows that using houses as classified from VHR imagery for a study area subset works well for redistributing human population at the regional level. This approach might be suitable to be applied also in other regions of e.g. sub-Saharan Africa.
Detailed land use, which is difficult to obtain, is an integral part of urban planning. Currently, GPS traces of vehicles are becoming readily available. It conveys human mobility and activity information, which can be closely related to the land use of a region. This paper discusses the potential use of taxi traces for urban land-use classification, particularly for recognizing the social function of urban land by using one year's trace data from 4000 taxis. First, we found that pick-up/set-down dynamics, extracted from taxi traces, exhibited clear patterns corresponding to the land-use classes of these regions. Second, with six features designed to characterize the pick-up/set-down pattern, land-use classes of regions could be recognized. Classification results using the best combination of features achieved a recognition accuracy of 95%. Third, the classification results also highlighted regions that changed land-use class from one to another, and such land-use class transition dynamics of regions revealed unusual real-world social events. Moreover, the pick-up/set-down dynamics could further reflect to what extent each region is used as a certain class.
[10]
CranshawJ,SchwartzR,Hong JI,et al.
The livehoods project: Utilizing social media to understand the dynamics of a city
[C]. 2012:58-65.
[11]
RattiC, FrenchmanD, Pulselli RM, et al.
Mobile landscapes: using location data from cell phones for urban analysis
[J]. , 2006,33(5):727-748.
[12]
PierreD, CatherineL, SamuelM, et al.
Dynamic population mapping using mobile phone data
During the past few decades, technologies such as remote sensing, geographical information systems, and global positioning systems have transformed the way the distribution of human population is studied and modeled in space and time. However, the mapping of populations remains constrained by the logistics of censuses and surveys. Consequently, spatially detailed changes across scales of days, weeks, or months, or even year to year, are difficult to assess and limit the application of human population maps in situations in which timely information is required, such as disasters, conflicts, or epidemics. Mobile phones (MPs) now have an extremely high penetration rate across the globe, and analyzing the spatiotemporal distribution of MP calls geolocated to the tower level may overcome many limitations of census-based approaches, provided that the use of MP data is properly assessed and calibrated. Using datasets of more than 1 billion MP call records from Portugal and France, we show how spatially and temporarily explicit estimations of population densities can be produced at national scales, and how these estimates compare with outputs produced using alternative human population mapping methods. We also demonstrate how maps of human population changes can be produced over multiple timescales while preserving the anonymity of MP users. With similar data being collected every day by MP network providers across the world, the prospect of being able to map contemporary and changing human population distributions over relatively short intervals exists, paving the way for new applications and a near real-time understanding of patterns and processes in human geography.
Comparison of retail trade areas of retail centers with different hierarchical levels: a case study of east Nanjing Road, Wujiaochang, Anshan Road in Shanghai